Abstract

The lipid metabolism in cultured fibroblasts from multisystemic (type 3) lipid storage myopathy and controls has been studied through pulse-chase experiments using 1-pyrenedecanoic acid as precursor. The uptake of 1-pyrenedecanoic acid was not significantly different in multisystemic lipid storage myopathy and control fibroblasts. The amount of fluorescent lipids synthesized by the cells was proportionally increasing with rising 1-pyrenedecanoic acid concentration in the culture medium. The proportion of the various fluorescent lipids does not significantly vary between 17 to 67 nmol/ml. But a 1-pyrenedecanoic acid concentration higher than 70–100 nmol/ml seems to be severely toxic for the cells. When incubated for 24 h in the presence of 1-pyrenedecanoic acid, at any concentration, the neutral lipid content (triacylglycerols, diacylglycerols and cholesterol esters) of cultured multisystemic lipid storage myopathy fibroblasts was higher than that of controls (around 600% of controls). Chase experiments showed that the biosynthesized triacylglycerols were not degraded in multisystemic lipid storage myopathy cells, but on the contrary were increased, probably by acylation of fluorescent fatty acids liberated from phospholipid turnover. In normal fibroblasts all the cellular fluorescence disappeared after 5 days chase and 1-pyrenedecanoic acid was recovered (as free 1-pyrenedecanoic acid) in the culture medium. In contrast, in multisystemic lipid storage myopathy fibroblasts, 40% of the fluorescence was remaining in the cells after 5 days chase; it was contributed by fluorescent triacylglycerols, which appeared as strongly fluorescent cytoplasmic vesicles. This probably results from a defect of the cytoplasmic catabolism of triacylglycerols which are accumulated in a cytoplasmic compartment independent of the lysosomal compartment (since the acid lysosomal lipase is not deficient in the multisystemic lipid storage myopathy cells). Finally, these results suggest a practical diagnostic application of 1-pyrenedecanoic acid, which can be used to differentiate multisystemic lipid storage myopathy from normal cultured fibroblasts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call