Abstract

The polyglutamine expansion within huntingtin is the causative factor in the pathogenesis of Huntington's disease (HD). Although the underlying mechanisms by which mutant huntingtin causes neuronal dysfunction and degeneration have not been fully elucidated, compelling evidence suggests that mitochondrial dysfunction and compromised energy metabolism are key players in HD pathogenesis. Longitudinal studies of HD subjects have shown reductions in glucose utilization before the disease clinical onset. Preferential striatal neurodegeneration, a hallmark of HD pathogenesis, also has been associated with interrupted energy metabolism. Data from genetic HD models indicate that mutant huntingtin disrupts mitochondrial bioenergetics and prevents adenosine triphosphate (ATP) generation, implying altered energy metabolism as an important component of HD pathogenesis. Here we revisit the evidence of abnormal energy metabolism in the central nervous system of HD patients, review our current understanding of the molecular mechanisms underlying abnormal metabolism induced by mutant huntingtin, and discuss the promising therapeutic development by halting abnormal metabolism in HD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.