Abstract
Selenomethionine metabolism and the biochemical basis for its cytotoxicity were analyzed in cultured human and murine lymphoid cells. The metabolic pathways were also addressed, using purified mammalian enzymes and crude tissue extracts. Selenomethionine was found to be effectively metabolized to S-adenosylmethionine analog, and that analog was further metabolized in transmethylation reactions and in polyamine synthesis, similarly to the corresponding sulphur metabolites of methionine. Selenomethionine did not block these pathways, nor was there a specific block on the synthesis of DNA, RNA, or proteins when added to the culture medium. Selenomethionine showed cytotoxicity at above 40 microM levels. Yet, low selenomethionine levels (10 microM) could replace methionine and support cell growth in the absence of methionine. Selenomethionine toxicity took place concomitantly with changes in S-adenosylmethionine pools. D-form was less cytotoxic than L-form. Methionine concentration modified the cytotoxicity. Together, this indicates that selenomethionine uptake and enzymic metabolism are involved in the cytotoxicity in a yet unknown way.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.