Abstract
1. The mood stabilizers lithium, carbamazepine (CBZ), and valproate (VPA), have differing pharmacokinetics, structures, mechanisms of action, efficacy spectra, and adverse effects. Lithium has a low therapeutic index and is renally excreted and hence has renally-mediated but not hepatically-mediated drug-drug interactions. 2. CBZ has multiple problematic drug-drug interactions due to its low therapeutic index, metabolism primarily by a single isoform (CYP3A3/4), active epoxide metabolite, susceptibility to CYP3A3/4 or epoxide hydrolase inhibitors, and ability to induce drug metabolism (via both cytochrome P450 oxidation and conjugation). In contrast, VPA has less prominent neurotoxicity and three principal metabolic pathways, rendering it less susceptible to toxicity due to inhibition of its metabolism. However, VPA can increase plasma concentrations of some drugs by inhibiting metabolism and increase free fractions of certain medications by displacing them from plasma proteins. 3. Older anticonvulsants such as phenobarbital and phenytoin induce hepatic metabolism, may produce toxicity due to inhibition of their metabolism, and have not gained general acceptance in the treatment of primary psychiatric disorders. 4. The newer anticonvulsants felbamate, lamotrigine, topiramate, and tiagabine have different hepatically-mediated drug-drug interactions, while the renally excreted gabapentin lacks hepatic drug-drug interactions but may have reduced bioavailability at higher doses. 5. Investigational anticonvulsants such as oxcarbazepine, vigabatrin, and zonisamide appear to have improved pharmacokinetic profiles compared to older agents. 6. Thus, several of the newer anticonvulsants lack the problematic drug-drug interactions seen with older agents, and some may even (based on their mechanisms of action and preliminary preclinical and clinical data) ultimately prove to have novel psychotropic effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.