Abstract

1. The disposition of tanzisertib [(1S,4R)-4-(9-((S)tetrahydrofuran-3-yl)-8-(2,4,6-trifluorophenylamino)-9H-purin-2-ylamino) cyclohexanol], a potent, orally active c-Jun amino-terminal kinase inhibitor intended for treatment of fibrotic diseases was studied in rats, dogs and humans following a single oral dose of [14C]tanzisertib (Independent Investigational Review Board Inc., Plantation, FL).2. Administered dose was quantitatively recovered in all species and feces/bile was the major route of elimination. Tanzisertib was rapidly absorbed (Tmax: 1–2 h) across all species with unchanged tanzisertib representing >83% of plasma radioactivity in dogs and humans, whereas <34% was observed in rats. Variable amounts of unchanged tanzisertib (1.5–32% of dose) was recovered in urine/feces across all species, the highest in human feces.3. Metabolic profiling revealed that tanzisertib was primarily metabolized via oxidation and conjugation pathways, but extensively metabolized in rats relative to dogs/humans. CC-418424 (S-cis isomer of tanzisertib) was the major plasma metabolite in rats (38.4–46.4% of plasma radioactivity), while the predominant plasma metabolite in humans and dogs was M18 (tanzisertib-/CC-418424 glucuronide), representing 7.7 and 3.2% of plasma radioactivity, respectively. Prevalent biliary metabolite in rats and dogs, M18 represented 16.8 and 17.1% of dose, respectively.4. In vitro studies using liver subcellular fractions and expressed enzymes characterized involvement of novel human aldo-keto reductases for oxido-reduction and UDP-glucuronosyltransferases for conjugation pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call