Abstract

BackgroundThe aim of this work was to examine the prevalence of different metabolical phenotypes of obesity, and to analyze, by using different risk scores, how the metabolic syndrome (MetS) definition discriminates between unhealthy and healthy metabolic phenotypes in different obesity classes.MethodsThe Finnish type 2 diabetes (FIN-D2D) survey, a part of the larger implementation study, was carried out in 2007. The present cross-sectional analysis comprises 2,849 individuals aged 45-74 years. The MetS was defined with the new Harmonization definition. Cardiovascular risk was estimated with the Framingham and SCORE risk scores. Diabetes risk was assessed with the FINDRISK score. Non-alcoholic fatty liver disease (NAFLD) was estimated with the NAFLD score. Participants with and without MetS were classified in different weight categories and analysis of regression models were used to test the linear trend between body mass index (BMI) and various characteristics in individuals with and without MetS; and interaction between BMI and MetS.ResultsA metabolically healthy but obese phenotype was observed in 9.2% of obese men and in 16.4% of obese women. The MetS-BMI interaction was significant for fasting glucose, 2-hour plasma glucose, fasting plasma insulin and insulin resistance (HOMA-IR)(p < 0.001 for all). The prevalence of total diabetes (detected prior to or during survey) was 37.0% in obese individuals with MetS and 4.3% in obese individuals without MetS (p < 0.001). MetS-BMI interaction was significant (p < 0.001) also for the Framingham 10 year CVD risk score, NAFLD score and estimated liver fat %, indicating greater effect of increasing BMI in participants with MetS compared to participants without MetS. The metabolically healthy but obese individuals had lower 2-hour postload glucose levels (p = 0.0030), lower NAFLD scores (p < 0.001) and lower CVD risk scores (Framingham, p < 0.001; SCORE, p = 0.002) than normal weight individuals with MetS.ConclusionsUndetected Type 2 diabetes was more prevalent among those with MetS irrespective of the BMI class and increasing BMI had a significantly greater effect on estimates of liver fat and future CVD risk among those with MetS compared with participants without MetS. A healthy obese phenotype was associated with a better metabolic profile than observed in normal weight individuals with MetS.

Highlights

  • The aim of this work was to examine the prevalence of different metabolical phenotypes of obesity, and to analyze, by using different risk scores, how the metabolic syndrome (MetS) definition discriminates between unhealthy and healthy metabolic phenotypes in different obesity classes

  • We examine the prevalence of different metabolic phenotypes of obesity, especially the “metabolically healthy but obese” phenotype, and analyze, by using different risk scores, how the MetS definition discriminates between unhealthy and healthy metabolic phenotypes in different obesity classes in a large populationbased cohort of 2,849 individuals

  • In all weight categories individuals with MetS had a more adverse metabolic profile and greater cardiovascular and diabetes risk scores compared with the individuals without MetS (Tables 1 and 2)

Read more

Summary

Introduction

The aim of this work was to examine the prevalence of different metabolical phenotypes of obesity, and to analyze, by using different risk scores, how the metabolic syndrome (MetS) definition discriminates between unhealthy and healthy metabolic phenotypes in different obesity classes. 10-25% of obese people [6] and a fraction of morbidly obese individuals [7] are not affected by metabolic disturbances [8,9,10,11] These “metabolically healthy but obese” subjects are insulin sensitive, have normal blood pressure, a favorable lipid profile, a lower proportion of visceral fat, less liver fat and a normal glucose metabolism despite having an excessive amount of body fat [9,10,11,12,13,14,15,16,17]. A subset of normal weight individuals suffer from metabolic disturbances that are characteristic of obesity [18]. There are only a few studies comparing these phenotypes and giving the true estimation of characteristics of these phenotypes in the general population [8,19]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.