Abstract

Xylose-inducible modules simultaneously expressing xylose utilization and naringenin biosynthesis pathways were developed in Yarrowia lipolytica to produce naringenin from a mixture of glucose and xylose. The naringenin synthetic pathway was constructed using a constitutive expression to yield 239.1 ± 5.1 mg/L naringenin. Furthermore, the introduction of an inducible pathway realized the dual function of xylose as a substrate and synthetic inducer, which coupled the xylose utilization with naringenin biosynthesis and increased production. Interestingly, the simultaneous enhancement of xylose reductase and xylose transporter expression along with that of xylitol dehydrogenase and xylulokinase can further improve the xylose utilization ability of Y. lipolytica. As expected, xylose-inducible synthesis of naringenin could achieved a titer of 715.3 ± 12.8 mg/L through the shake-flask cultivation level. Therefore, xylose-induced activation of both the xylose utilization and product biosynthesis pathway is considered to be an effective strategy for the biosynthesis of xylose-derived chemicals in yeast.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.