Abstract

The coordination of cellular behavior is a prerequisite of functionality of tissues and organs. Generally, this coordination occurs by signal transduction, neuronal control, or exchange of messenger molecules. The extent to which metabolic processes are involved in intercellular communication is less understood. Here, we address this question in layers of resting yeast cells and report for the first time the observation of intercellular glycolytic waves. We use a combined experimental and theoretical approach and explain the radial velocity of the waves to arise from the substrate gradient due to local substrate addition. Our results show that metabolic processes introduce an additional level of local intercellular coordination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.