Abstract

Thioxanthones (TXs) are photoinitiators widely used in UV curable resins and food packaging, and their residues have been frequently detected in human bodies. Our current understanding of the susceptibility of residual TXsto metabolism and their effects on human health is very limited. Thein vitro metabolism of TXs and its toxic effects on cytochrome P450 (CYP) (the key xenobiotic metabolizing enzymes) were examined in this study. 2-Chlorothioxanthone (2-Cl-TX) significantly inhibited the enzymatic activities of CYP1A2 and CYP3A4 with IC50 of 8.36 and 0.86 μM, respectively. The exposure to 2-Cl-TX at 2.5 μM up-regulated the mRNA expression of CYP1A2 and CYP3A4 in human hepatocellular carcinoma cells to 3.03-fold and 2.02-fold, respectively. 2-Cl-TX at 2.5 μM caused 2.19-fold and 1.98-fold overexpression of CYP1A2 and CYP3A4, respectively. In vitro studies revealed that 2-Cl-TX was biotransformed into two metabolites through the sulfoxidation of the sulfur atom, or via the hydroxylation of aromatic carbon. Results from this study, including the metabolic susceptibility of residual 2-Cl-TX, the proposed metabolites and the significant toxic effect on the activities, mRNA, and protein expression of CYP1A2 and CYP3A4, are vital to the human health and safety risk assessment from this ubiquitous xenobiotic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.