Abstract

We report the role of a gene (rpoH) from the facultative phototroph Rhodobacter sphaeroides that encodes a protein (sigma37) similar to Escherichia coli sigma32 and other members of the heat shock family of eubacterial sigma factors. R. sphaeroides sigma37 controls genes that function during environmental stress, since an R. sphaeroides deltaRpoH mutant is approximately 30-fold more sensitive to the toxic oxyanion tellurite than wild-type cells. However, the deltaRpoH mutant lacks several phenotypes characteristic of E. coli cells lacking sigma32. For example, an R. sphaeroides deltaRpoH mutant is not generally defective in phage morphogenesis, since it plates the lytic virus RS1, as well as its wild-type parent. In characterizing the response of R. sphaeroides to heat, we found that its growth temperature profile is different when cells generate energy by aerobic respiration, anaerobic respiration, or photosynthesis. However, growth of the deltaRpoH mutant is comparable to that of a wild-type strain under each of these conditions. The deltaRpoH mutant mounted a heat shock response when aerobically grown cells were shifted from 30 to 42 degrees C, but it exhibited altered induction kinetics of approximately 120-, 85-, 75-, and 65-kDa proteins. There was also reduced accumulation of several presumed heat shock transcripts (rpoD P(HS), groESL1, etc.) when aerobically grown deltaRpoH cells were placed at 42 degrees C. Under aerobic conditions, it appears that another sigma factor enables the deltaRpoH mutant to mount a heat shock response, since either RNA polymerase preparations from an deltaRpoH mutant, reconstituted Esigma37, or a holoenzyme containing a 38-kDa protein (sigma38) each transcribed E. coli Esigma32-dependent promoters. The lower growth temperature profile of photosynthetic cells is correlated with a difference in heat-inducible gene expression, since neither wild-type cells or the deltaRpoH mutant mount a typical heat shock response after such cultures were shifted from 30 to 37 degrees C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.