Abstract

BackgroundPyruvate kinase is an important element in flux control of the intermediate metabolism. It catalyzes the irreversible conversion of phosphoenolpyruvate into pyruvate and is under allosteric control. In Corynebacterium glutamicum, this enzyme was regarded as promising target for improved production of lysine, one of the major amino acids in animal nutrition. In pyruvate kinase deficient strains the required equimolar ratio of the two lysine precursors oxaloacetate and pyruvate can be achieved through concerted action of the phosphotransferase system (PTS) and phosphoenolpyruvate carboxylase (PEPC), whereby a reduced amount of carbon may be lost as CO2 due to reduced flux into the tricarboxylic acid (TCA) cycle. In previous studies, deletion of pyruvate kinase in lysine-producing C. glutamicum, however, did not yield a clear picture and the exact metabolic consequences are not fully understood.ResultsIn this work, deletion of the pyk gene, encoding pyruvate kinase, was carried out in the lysine-producing strain C. glutamicum lysCfbr, expressing a feedback resistant aspartokinase, to investigate the cellular response to deletion of this central glycolytic enzyme. Pyk deletion was achieved by allelic replacement, verified by PCR analysis and the lack of in vitro enzyme activity. The deletion mutant showed an overall growth behavior (specific growth rate, glucose uptake rate, biomass yield) which was very similar to that of the parent strain, but differed in slightly reduced lysine formation, increased formation of the overflow metabolites dihydroxyacetone and glycerol and in metabolic fluxes around the pyruvate node. The latter involved a flux shift from pyruvate carboxylase (PC) to PEPC, by which the cell maintained anaplerotic supply of the TCA cycle. This created a metabolic by-pass from PEP to pyruvate via malic enzyme demonstrating its contribution to metabolic flexibility of C. glutamicum on glucose.ConclusionThe metabolic flux analysis performed illustrates the high flexibility of the metabolic network of C. glutamicum to compensate for external perturbation. The organism could almost maintain its growth and production performance through a local redirection of the metabolic flux, thereby fulfilling all anabolic and catabolic needs. The formation of the undesired overflow metabolites dihydroxyacetone and glycerol, in the deletion mutant, however, indicates a limiting capacity of the metabolism down-stream of their common precursor glyceraldehyde 3-phosphate and opens possibilities for further strain engineering.

Highlights

  • Pyruvate kinase is an important element in flux control of the intermediate metabolism

  • Whereas pyruvate kinase deletion resulted in increased lysine production for different strains of the close relative Brevibacterium flavum [6,11,12], and during the major production phase of a batch process with C. glutamicum [7], production of lysine was strongly reduced in a strain of C. lactofermentum [5]

  • PCR analysis and in vitro measurement of enzyme activity in crude cell extracts ensured the deletion of the pyk gene and further demonstrated that there is no remaining pyruvate kinase like activity in C. glutamicum lysCfbr ∆pyk

Read more

Summary

Introduction

Pyruvate kinase is an important element in flux control of the intermediate metabolism It catalyzes the irreversible conversion of phosphoenolpyruvate into pyruvate and is under allosteric control. In pyruvate kinase deficient strains the required equimolar ratio of the two lysine precursors oxaloacetate and pyruvate can be achieved through concerted action of the phosphotransferase system (PTS) and phosphoenolpyruvate carboxylase (PEPC), whereby a reduced amount of carbon may be lost as CO2 due to reduced flux into the tricarboxylic acid (TCA) cycle. Pyruvate kinase was investigated as genetic target for improved production of lysine [5,6,7] This enzyme, catalyzing the irreversible formation of pyruvate from phosphoenolpyruvate (PEP), is a key enzyme in the central pathways of energy production [8]. Whereas pyruvate kinase deletion resulted in increased lysine production for different strains of the close relative Brevibacterium flavum [6,11,12], and during the major production phase of a batch process with C. glutamicum [7], production of lysine was strongly reduced in a strain of C. lactofermentum [5]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call