Abstract

In the autumn of 2014, nine large mesocosms were deployed in the oligotrophic subtropical North-Atlantic coastal waters off Gran Canaria (Spain). Their deployment was designed to address the acidification effects of CO2 levels from 400 to 1,400 μatm, on a plankton community experiencing upwelling of nutrient-rich deep water. Among other parameters, chlorophyll a (chl-a), potential respiration (Φ), and biomass in terms of particulate protein (B) were measured in the microplankton community (0.7–50.0 μm) during an oligotrophic phase (Phase I), a phytoplankton-bloom phase (Phase II), and a post-bloom phase (Phase III). Here, we explore the use of the Φ/chl-a ratio in monitoring shifts in the microplankton community composition and its metabolism. Φ/chl-a values below 2.5 μL O2 h−1 (μg chl-a)−1 indicated a community dominated by photoautotrophs. When Φ/chl-a ranged higher, between 2.5 and 7.0 μL O2 h−1 (μg chl-a)−1, it indicated a mixed community of phytoplankton, microzooplankton and heterotrophic prokaryotes. When Φ/chl-a rose above 7.0 μL O2 h−1 (μg chl-a)−1, it indicated a community where microzooplankton proliferated (>10.0 μL O2 h−1 (μg chl-a)−1), because heterotrophic dinoflagellates bloomed. The first derivative of B, as a function of time (dB/dt), indicates the rate of protein build-up when positive and the rate of protein loss, when negative. It revealed that the maximum increase in particulate protein (biomass) occurred between 1 and 2 days before the chl-a peak. A day after this peak, the trough revealed the maximum net biomass loss. This analysis did not detect significant changes in particulate protein, neither in Phase I nor in Phase III. Integral analysis of Φ, chl-a and B, over the duration of each phase, for each mesocosm, reflected a positive relationship between Φ and pCO2 during Phase II [α = 230·10−5 μL O2 h−1 L−1 (μatm CO2)−1 (phase-day)−1, R2 = 0.30] and between chl-a and pCO2 during Phase III [α = 100·10−5 μg chl-a L−1 (μ atmCO2)−1 (phase-day)−1, R2 = 0.84]. At the end of Phase II, a harmful algal species (HAS), Vicicitus globosus, bloomed in the high pCO2 mesocosms. In these mesocosms, microzooplankton did not proliferate, and chl-a retention time in the water column increased. In these V. globosus-disrupted communities, the Φ/chl-a ratio [4.1 ± 1.5 μL O2 h−1 (μg chl-a)−1] was more similar to the Φ/chl-a ratio in a mixed plankton community than to a photoautotroph-dominated one.

Highlights

  • The global economy, based on the combustion of fossil resources, has caused the increase in anthropogenic carbon dioxide (CO2) emissions over the past 250 years, resulting in atmospheric pressure CO2 (pCO2) values that currently exceed 400 μatm, the highest level the planet has experienced in the last 800,000 years

  • From T15 onwards, the former cyanobacteria-dominated community evolved to a mixed one: diatoms, prymnesiophytes, chrysophytes and cyanobacteria (Hernández-Hernández et al, 2018; Taucher et al, 2018)

  • When comparing the normalized integral values of all these vital parameters between phases, we found that the highest values occurred during Phase II (Figure 3), due to the phytoplankton bloom (2.39 ± 0.81 μL O2 h−1 L−1 d−1 in the case of, 2.06 ± 0.46 mg chl-a L−1 d−1 in the case of chl-a, and 0.10 ± 0.24 mg protein L−1 d−1 in the case of B)

Read more

Summary

Introduction

The global economy, based on the combustion of fossil resources, has caused the increase in anthropogenic carbon dioxide (CO2) emissions over the past 250 years, resulting in atmospheric pCO2 values that currently exceed 400 μatm, the highest level the planet has experienced in the last 800,000 years. Oceans are taking up nearly one third of this CO2, impacting seawater carbonate chemistry, and causing ocean acidification (Doney et al, 2009) Even if these changes raise photosynthetic carbon fixation (Riebesell et al, 2007), the resulting organic matter may have lower nutritional value to the detriment of the rest of the ocean ecosystem (Doney et al, 2009). The decline in PP continued with higher productivity in the most acidified mesocosms (Hernández-Hernández et al, 2018) We continue these types of mesocosm experiments, focusing on cellular metabolism, to further investigate the impact of rising ocean CO2 levels on plankton

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call