Abstract

Vibrio parahaemolyticus is a causative agent of the acute hepatopancreatic necrosis disease (AHPND) that leads to massive mortalities in penaeid shrimp aquaculture worldwide. Mitigation of the significant economic losses caused by AHPND are hampered by knowledge gaps in the pathogenic mechanism of V. parahaemolyticus infection in shrimp. To provide insights into this infection mechanisms, molecular responses of shrimp exposed to V. parahaemolyticus were measured via a metabolomics approach. A gas chromatography–mass spectrometry (GC–MS) platform was employed to generate metabolite profiles of haemolymph from Penaeus vannamei shrimp challenged with V. parahaemolyticus and control shrimp (not exposed to the pathogen). The results revealed increases of several intermediates in the citric acid (TCA) cycle (cis-aconitic acid, citric acid, fumaric acid, isocitric acid and succinic acid) and phosphoenolpyruvic acid (PEP), as well as decreases of six amino acids (threonine, asparagine, 4-aminobutyric acid, histidine, ornithine, glutamine) in challenged shrimp compared to controls. A pathway analysis identified 11 significantly changed pathways due to V. parahaemolyticus infection, which were mostly amino acid metabolisms, TCA cycle and gluconeogenesis. The results suggest an increase in metabolic rate and elevated TCA cycle and gluconeogenesis activities in Vibrio-challenged shrimp due to the high energy demand of the associated immune response. The study provides important new findings about the pathogenic mechanisms of V. parahaemolyticus invasion in shrimp at the metabolic level. Further metabolomics investigations may lead for identification of metabolite biomarkers of V. parahaemolyticus infection for early detection of AHPND.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.