Abstract

ABSTRACT In the current study the metabolic response of peanut root exudates to Sclerotium rolfsii Sacc. infection was analyzed in plant-pathogen interaction systems. The analytical methodology employed in this study entailed the utilization of ultra-high-performance liquid chromatography coupled with tandem quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) in relation to metabolomics. The experimental findings have demonstrated that pathogen infection induces significant variations in both the composition and abundance of peanut root exudates. A total of 322 metabolites were identified in peanut root exudates, among which 19 metabolites showed significant differences under pathogen infection. The results of the orthogonal partial least squares score discriminant analysis (OPLS) and hierarchical cluster analysis (HCA) plots clearly demonstrated that the metabolic profiling effectively distinguished between peanut plants inoculated with S. rolfsii Sacc. and the healthy control plants that were not inoculated. Pathogen infection is associated with five metabolic pathways, the most correlated being arginine and proline metabolism and ABC transporters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.