Abstract

Ureteral obstruction will lead clinically to hydronephrosis, which may further develop into partial or complete loss of kidney function and even cause permanent histological damage. However, there is little knowledge of metabolic responses during the obstructed process and its recoverability. In this study, a complete unilateral ureteral obstruction (CUUO) model was established in the rabbit, and 1H NMR-based metabolomic analysis of urine was used to reveal the metabolic perturbations in rabbits caused by CUUO and the metabolic recovery after the CUUO was relieved. Univariate and multivariate statistical analyses were used to identify metabolic characteristics. The gradually decreased levels of 3-hydroxykynurenine, 3-methylhistidine, creatinine, guanidoacetate, meta- and para-hydroxyphenylacetate, and phenylacetylglycine and the gradually increased levels of acetate, alanine, citrate, glycine, lactate, and methionine in urine could be regarded as potential biomarkers for the occurrence and severity of ureteral obstruction. And the reduced levels of 3-methylhistidine, creatinine, guanidoacetate, hippurate, meta-hydroxyphenylacetate, and methylguanidine and the elevated levels of 2-aminoisobutyrate, acetylcholine, citrate, lactate, lysine, valine, and α-ketoglutarate in urine compared with the obstructed level could characterize the metabolic recovery of ureteral obstruction. Our results depicted the disturbed biochemical pathways involved in ureteral obstruction and demonstrated the practicability of recovering renal functions for the patients with severe hydronephrosis in clinical practice by removing causes for obstruction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call