Abstract

The brain is quite sensitive to changes in energy supply because of its high energetic demand. Even small changes in energy metabolism may be the basis of impaired brain function, leading to the occurrence and development of cerebral ischemia/reperfusion (I/R) injury. Abundant evidence supports that metabolic defects of brain energy during the post-reperfusion period, especially low glucose oxidative metabolism and elevated glycolysis levels, which play a crucial role in cerebral I/R pathophysiology. Whereas research on brain energy metabolism dysfunction under the background of cerebral I/R mainly focuses on neurons, the research on the complexity of microglia energy metabolism in cerebral I/R is just emerging. As resident immune cells of the central nervous system, microglia activate rapidly and then transform into an M1 or M2 phenotype to correspond to changes in brain homeostasis during cerebral I/R injury. M1 microglia release proinflammatory factors to promote neuroinflammation, while M2 microglia play a neuroprotective role by secreting anti-inflammatory factors. The abnormal brain microenvironment promotes the metabolic reprogramming of microglia, which further affects the polarization state of microglia and disrupts the dynamic equilibrium of M1/M2, resulting in the aggravation of cerebral I/R injury. Increasing evidence suggests that metabolic reprogramming is a key driver of microglial inflammation. For example, M1 microglia preferentially produce energy through glycolysis, while M2 microglia provide energy primarily through oxidative phosphorylation. In this review, we highlight the emerging significance of regulating microglial energy metabolism in cerebral I/R injury.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call