Abstract

Sodium nitrite (SN), a prevalent food preservative, is known to precipitate hepatotoxicity upon exposure. This study elucidates the hepatoprotective effects of corn oligopeptide (COP) and vitamin E (VE) against SN-induced hepatic injury in canine hepatocytes. Canine liver cells were subjected to SN to induce hepatotoxicity, followed by treatment with COP and VE. Evaluations included assays for cell viability, oxidative stress markers, apoptosis, and inflammatory cytokines. Additionally, transcriptomic and metabolomic analyses were performed to delineate the underlying molecular mechanisms. The findings demonstrated that COP and VE significantly ameliorated SN-induced cytotoxicity, oxidative stress, and apoptosis. It was evidenced by restored cell viability, enhanced antioxidant enzyme activity, reduced cytoplasmic enzyme leakage, and decreased levels of malondialdehyde and inflammatory cytokines, with COP showing superior efficacy. The RNA sequencing revealed that COP treatment suppressed the SN-activated aminoacyl-tRNA biosynthesis pathway and TGF-β/NF-κB signaling pathways, thereby mitigating amino acid depletion, apoptosis, and inflammation. Moreover, COP treatment upregulated genes associated with protein folding, bile acid synthesis, and DNA repair. Metabolomic analysis corroborated these results, showing that COP restored amino acid levels and enhanced bile acid metabolism, alleviating SN-induced metabolic disruptions. These findings offered significant insights into the protective mechanisms of COP underscoring its prospective application in treating liver injuries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.