Abstract

B cells engaging with antigen and secondary signals provided by T cell help, or ligands for Toll-like receptors, undergo a step-wise process of differentiation to eventually produce antibody-secreting plasma cells. During the course of this conversion, the cells transition from a resting, non-growing state to an activated B-cell state engaged in DNA synthesis and mitosis to a terminally differentiated, quiescent cell state with expanded organelles necessary for high levels of secretion. Each of these phases is accompanied by considerable changes in metabolic requirements. To facilitate evaluation of this metabolic reprogramming, methods for the in vitro differentiation of human B cells that incorporates each of the transitional stages are described.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call