Abstract

Viral replication depends entirely on the energy and biosynthetic precursors supplied by the host cell metabolic network. Viruses actively reprogram host cell metabolism to establish optimal environment for their replication and spread. They stimulate the uptake of extracellular nutrients and predominantly modulate glucose, glutamine, and fatty acid metabolism to support anabolic metabolic pathways. Some viruses activate the process of aerobic glycolysis, divert the glycolytic carbon for biosynthetic reactions, and stimulate glutamine utilization to replenish tricarboxylic cycle intermediates. Others use glutamine carbon to promote de novo fatty acid synthesis, amino acid supply or glutathione production. The unique metabolic signature and different dependence of viral life cycle on the individual metabolic processes is therefore characteristic feature of almost each virus. Deeper understanding of how viruses alter cellular metabolic pathways or their upstream regulatory circuits may lead to development of more effective antiviral treatment strategies based on targeted metabolic inhibition. Keywords: virus infection; metabolism; glycolysis; glutamine metabolism; fatty acid synthesis; metabolic reprogramming; virus-host interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.