Abstract
Bis(2-ethylhexyl) phthalate (DEHP) is a plasticizer used in several items, non-covalently bound to plastics and easily released, since metabolites were found in human matrices. DEHP is an endocrine disrupter and children are particularly vulnerable and susceptible to DEHP effects due to higher exposure levels and developmental stage. A juvenile toxicity study was performed to identify DEHP hazard and mode of action in Sprague-Dawley rats of both sexes during peri-pubertal period – corresponding to childhood phase - from weaning, post-natal day (PND) 23, to full sexual maturity (PND60); the dose levels of 0, 9, 21 and 48 mg/kg bw/day were derived from LIFE PERSUADED biomonitoring study in children. DEHP was administered by gavage for 28 days (5 days/week); timing of preputial separation and vaginal opening was observed during treatment. Histopathological analysis was performed on: adrenals, spleen, liver, thyroid and reproductive organs. The following serum biomarkers were assessed: estradiol, testosterone, anti-Mullerian hormone, tetraiodothyronine, thyroid stimulating hormone, adiponectin and leptin. Gene expression on hypothalamic–pituitary area was focused on follicle stimulating, luteinizing, and thyroid stimulating hormones. The results showed that main targets of DEHP during juvenile period were liver and metabolic system in both sexes, while sex-specific effects were recorded in reproductive system (male rats) and in thyroid (female rats). DEHP exposure during peri-pubertal period at dose levels derived from biomonitoring study in children can induce sex-specific imbalances identifying the juvenile animal model as a sound tool to identify hazards for a reliable risk assessment targeted to children.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.