Abstract

Undesirable ammonium concentrations can lead to unstable anaerobic digestion processes, and Methanosarcina spp. are the representative methanogens under inhibition. However, no known work seems to exist for directly exploring the detailed metabolic regulation of pure cultured representative Methanosarcina spp. to ammonium inhibition. We used transcriptomics and proteomics to profile the metabolic regulation of Methanosarcina barkeri to 1, 4, and 7 g N/L of total ammoniacal nitrogen (TAN), where free ammonia concentrations were between 1.5 and 36.1 mg N/L. At the initial stages of ammonium inhibition, the genes participating in the acquisition and assimilation of reduced nitrogen sources showed significant upregulation where the minimal fold change of gene transcription was about 2. Apart from nitrogen metabolism, the transcription of some genes in methanogenesis also significantly increased at the initial stages. For example, the genes encoding alternative heterodisulfide reductase subunits (HdrAB), energy-converting hydrogenase subunit (EchC), and methanophenazine-dependent hydrogenase subunits (VhtAC) were significantly upregulated by at least 2.05 times. For the element translocation at the initial stages, the genes participating in the uptake of ferrous iron, potassium ion, and molybdate were significantly upregulated with a minimal fold change of 2.10. As the cultivation proceeded, the gene encoding the cell division protein subunit (FtsH) was significantly upregulated by 13.0 times at 7 g N/L of TAN; meanwhile, an increment in OD600 was observed at the terminal sampling point of 7 g N/L of TAN. The present study explored the metabolic regulation of M. barkeri in stress response, protein synthesis, signal transduction, nitrogen metabolism, methanogenesis, and element translocation. The results would contribute to the understanding of the metabolic effects of ammonium inhibition on methanogens and have significant practical implication in inhibited anaerobic digestion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call