Abstract

The giant panda is an icon of conservation and survived a large-scale bamboo die off in the 1980s in China. Captive breeding programs have produced a large population in zoos and efforts continue to reintroduce those animals into the wild. However, we lack sufficient knowledge of their physiological ecology to determine requirements for survival now and in the face of climate change. We measured resting and active metabolic rates of giant pandas in order to determine if current bamboo resources were sufficient for adding additional animals to populations in natural reserves. Resting metabolic rates were somewhat below average for a panda sized mammal and active metabolic rates were in the normal range. Pandas do not have exceptionally low metabolic rates. Nevertheless, there is enough bamboo in natural reserves to support both natural populations and large numbers of reintroduced pandas. Bamboo will not be the limiting factor in successful reintroduction.

Highlights

  • We sought to measure the metabolic rate of giant pandas using DLW so that we could determine the metabolic cost of activity of free-living animals

  • The resting metabolic rate (RMR) of the giant panda ranged from 0.126 ml/g/h of O2 to 0.225 ml/g/h of O2 (Fig. 1)

  • Interaction of age and sex may have been related to the small sample size. These RMRs for sleeping giant pandas convert to a daily energy expenditure of 7.4 MJ/day, which is higher than the 5.2 MJ/day recently reported for active captive and wild giant pandas[17]

Read more

Summary

Introduction

We sought to measure the metabolic rate of giant pandas using DLW so that we could determine the metabolic cost of activity of free-living animals. As a first step we measured the metabolism of nine animals at rest in the laboratory at two temperatures using a Sable Systems International Flowkit- 500 mass flow system. We measured the activity metabolic rates of seven animals in summer and winter at the Chengdu Research Base of Giant Panda Breeding in Chengdu China (see Methods for a complete description of the experiments).

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.