Abstract

Even among vertebrate species of the same body mass and higher-level taxonomic group, metabolic rates exhibit substantial differences, for which diverse explanatory factors-such as dietary energy content, latitude, altitude, temperature, and rainfall-have been postulated. A unifying underlying factor could be food availability, in turn controlled by net primary productivity (NPP) of the animal's natural environment. We tested this possibility by studying five North American species of Peromyscus mice, all of them similar in diet (generalist omnivores) and in gut morphology but differing by factors of up to 13 in NPP of their habitat of origin. We maintained breeding colonies of all five species in the laboratory under identical conditions and consuming identical diets. Basal metabolic rate (BMR) and daily ad libitum food intake both increased with NPP, which explained 88% and 90% of their variances, respectively. High-metabolism mouse species from high-NPP environments were behaviorally more active than were low-metabolism species from low-NPP environments. Intestinal glucose uptake capacity also increased with NPP (and with BMR and food intake), because species of high-NPP environments had larger small intestines and higher uptake rates. For metabolic rates of our five species, the driving environmental variable is environmental productivity itself (and hence food availability), rather than temporal variability of productivity. Thus, species that have evolved in the presence of abundant food run their metabolism "fast," both while active and while idling, as compared with species of less productive environments, even when all species are given access to unlimited food.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.