Abstract

Quasi-continuous DO and pH measurements (total 47 days) were conducted during enclosure experiments (6 enclosures; 5 × 5 × 2.5 m), in which a biomass gradient of silver carp was created. After subtracting the air–water exchanges of O2 and CO2, the chemical and biochemical changes in DO (dissolved oxygen) and DIC (dissolved inorganic carbon) were estimated in order to evaluate MQ (metabolic quotient: DO change divided by DIC change) at intervals of 1 hour. By removing small absolute changes below the threshold value (0.01 mM h−1), the averaged values of the 24 MQ means for the respective 1-hour periods ranged from 0.96 to 1.20 in the six enclosures. Because the MQs in the daytime inversely correlated well with the ratio of NH+ 4–N to (NH+ 4–N + NO− 3–N), not the ecosystems, i.e., density of fish, community structure of zooplankton and phytoplankton, but the form of nitrogen uptaken for primary production principally determined the MQs. The higher MQs observed in the daytime compared with the nighttime (from 14% to 21% except 3% for one enclosure) could not be explained by the denitrification and/or dissolution of CaCO3 in the sediments, therefore suggesting the selectively faster decomposition of part of the organic matter provided through primary production, in other words, an accumulation of another part of the organic matter in the diurnal and/or daily time scale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.