Abstract

(1)H magnetic resonance spectroscopy (MRS) yields site-specific signatures that directly report metabolic concentrations, biochemistry and kinetics-provided spectral sensitivity and quality are sufficient. Here, an enabling relaxation-enhanced (RE) MRS approach is demonstrated that by combining highly selective spectral excitations with operation at very high magnetic fields, delivers spectra exhibiting signal-to-noise ratios >50:1 in under 6 s for ~5 × 5 × 5 (mm)(3) voxels, with flat baselines and no interference from water. With this spectral quality, MRS was used to interrogate a number of metabolic properties in stroked rat models. Metabolic confinements imposed by randomly oriented micro-architectures were detected and found to change upon ischaemia; intensities of downfield resonances were found to be selectively altered in stroked hemispheres; and longitudinal relaxation time of lactic acid was found to increase by over 50% its control value as early as 3-h post ischaemia, paralleling the onset of cytotoxic oedema. These results demonstrate potential of (1)H MRS at ultrahigh fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call