Abstract

Nutrient availability and utilization in hypothalamic cells are directly associated with the regulation of whole-body energy homeostasis. Thus, establishing metabolic profiling in the hypothalamus in response to metabolic shift is valuable to better understand the underlying mechanism of appetite regulation. In the present study, we evaluate the alteration of lipophilic and hydrophilic metabolites in both the hypothalamus and serum of fasted mice. Fasted mice displayed an elevated ketone body and decreased lactate levels in the hypothalamus. In support of the metabolite data, we further confirmed that short-term food deprivation resulted in the altered expression of genes involved in cellular metabolic processes, including the shuttling of fuel sources and the production of monocarboxylates in hypothalamic astrocytes. Overall, the current study provides useful information to close the gap in our understanding of the molecular and cellular mechanisms underlying hypothalamic control of whole-body energy metabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.