Abstract

BackgroundUsing mass spectrometry, we evaluated the metabolic profiles of patients who had rotator cuff tears with shoulder stiffness, or shoulder stiffness only, and compared these with samples from a control group.MethodsThis study enrolled 28 patients, including 10 patients with shoulder stiffness only (group I), nine patients with rotator cuff tear and stiffness (group II), and nine controls selected from patients diagnosed with impingement syndrome or long head of the biceps lesions without evident limitation of joint motion or rotator cuff tears. Serum and tissue from the rotator interval and anterior capsule were collected. In all, 82 samples were analyzed for metabolite profiling using the AbsoluteIDQ™p180 Kit.ResultsComparison of 186 metabolites revealed that groups I and II had significantly higher concentrations of sphingolipids in serum (SM C24:1; group I = 65.16 μm, group II = 68.07 μm) than controls (55.37 μm, p = 0.005 & 0.015, respectively). Higher concentrations of sphingolipids were also present in the rotator interval tissue (SM C22:3) of groups 1 (0.0197 μm) and 2 (0.0144 μm) than controls (0.0081 μm, p = 0.012 & 0.014, respectively). The concentration of glycerophospholipid (PC aa C30:0) was higher in the anterior capsule tissue of groups I (0.850 μm) and II (1.164 μm) than controls (0.572 μm; p = 0.007) Total cholesterol was positively correlated with sphingolipid concentration in serum (SM C24:1, rho = 0.782, p = 0.008) and rotator interval tissue (SM C22:3, rho = 0.750, p = 0.017). There was no significant difference in the metabolites evaluated in groups I and II.ConclusionMetabolic profiling showed that levels of lipid-related metabolites were increased in the anterior capsule tissue and rotator interval tissue of patients with shoulder stiffness. Sphingomyelin (SM C22:3) in the tissue of the rotator interval was positively correlated with the serum level of total cholesterol in patients with shoulder stiffness only. The level of glycerophospholipid (PC30:0) in the anterior capsule was positively correlated with the serum level of total cholesterol in patients who had rotator cuff tear with shoulder stiffness. The results indicate that serum total cholesterol may be related to shoulder stiffness. Future studies are needed to evaluate the role of serum cholesterol in the pathogenesis of shoulder stiffness.Trial registrationKC12OISI0532. Registered Nov 15, 2012. approval by the Institutional Review Board of Seoul St. Mary’s Hospital, the Catholic University of Korea.

Highlights

  • Using mass spectrometry, we evaluated the metabolic profiles of patients who had rotator cuff tears with shoulder stiffness, or shoulder stiffness only, and compared these with samples from a control group

  • Using a targeted metabolic profiling platform, we successfully identified alterations in sphingomyelin and glycerophospholipid from serum, anterior capsule tissue, and rotator interval tissue in patients with shoulder stiffness when compared with a normal control group

  • We found that the sphingomyelin (SM C22:3) level in the tissue of the rotator interval was positively correlated with serum total cholesterol level in patients with primary shoulder stiffness

Read more

Summary

Introduction

We evaluated the metabolic profiles of patients who had rotator cuff tears with shoulder stiffness, or shoulder stiffness only, and compared these with samples from a control group. Shoulder stiffness is a common pathological condition that manifests as restriction in active and passive range of motion. Shoulder stiffness involves both inflammatory and fibrotic processes [1, 2]. Shoulder stiffness is a consequence of local inflammatory and fibrotic change in the capsule tissue, an increased concentration of soluble intercellular adhesion molecule-1 (ICAM-1) in serum of patients with adhesive capsulitis or diabetes mellitus is a good example of the connection with systemic conditions [11]. As there are various external and internal conditions that lead to shoulder stiffness, it is important to identify common factors involved with shoulder stiffness. Doing so requires an inspection tool that can simultaneously screen and evaluate related factors among a huge number of candidates

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call