Abstract

While pressure is a significant characteristic of petroleum reservoirs, it is often overlooked in laboratory studies. To clarify the composition and metabolic properties of microbial communities under high-pressure conditions, we established methanogenic and sulfate-reducing enrichment cultures under high-pressure conditions using production water from the Jilin Oilfield in China. We utilized a metagenomics approach to analyze the microbial community after a 90-day incubation period. Under methanogenic conditions, Firmicutes, Deferribacteres, Ignavibacteriae, Thermotogae, and Nitrospirae, in association with the hydrogenotrophic methanogen Archaeoglobaceae and acetoclastic Methanosaeta, were highly represented. Genomes for Ca. Odinarchaeota and the hydrogen-dependent methylotrophic Ca. Methanosuratus were also recovered from the methanogenic culture. The sulfate-reducing community was dominated by Firmicutes, Thermotogae, Nitrospirae, Archaeoglobus, and several candidate taxa including Ca. Bipolaricaulota, Ca. Aminicenantes, and Candidate division WOR-3. These candidate taxa were key pantothenate producers for other community members. The study expands present knowledge of the metabolic roles of petroleum-degrading microbial communities under high-pressure conditions. Our results also indicate that microbial community interactions were shaped by syntrophic metabolism and the exchange of amino acids and cofactors among members. Furthermore, incubation under in situ pressure conditions has the potential to reveal the roles of microbial dark matter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call