Abstract

Clonazolam is a designer benzodiazepine with strong sedative and amnesic effects. As we all know, the detection of metabolites is the key to confirming the use of substances in the field of forensic toxicology. In order to better describe clonazolam metabolism completely, we performed the two different experiments exploiting the unique characteristics of the models used. In this study, in vivo and in vitro samples were analyzed with liquid chromatography-quadrupole/electrostatic field orbitrap mass spectrometry. The results showed that seven Phase I metabolites and one Phase II metabolite were detected in zebrafish model. The remaining Phase I and II metabolites were also found in the incubation solution of pooled human liver microsomes. The main types of metabolic reactions of clonazolam included hydroxylation, dealkylation, nitroreduction, dechlorination, N-Acetylation, and O-glucuronidation. In this paper, the main metabolites and metabolic pathways of clonazolam are clarified in detail in order to further improve the metabolic rule of clonazolam. Based on these results, to better detect and judge the abuse of clonazolam, we suggest that M1, its nitro reduction product, is used as its biomarker. The results of this study provide a theoretical basis for the pharmacokinetics and forensic medicine of clonazolam.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call