Abstract

Comprehensive metabolite fingerprinting of transgenic potatoes that constitutively express human beta amyloid, curdlan synthase (CRDS), and glycogen synthase (glgA); and of wild-type potatoes was carried out using FT-IR and 1H NMR spectroscopy in combination with multivariate analyses. Comparison of metabolic patterns between transgenic and wild-type potatoes revealed that there were neither quantitative nor qualitative differences in metabolites between transgenic potatoes expressing human beta amyloid, CRDS or glgA, and non-transformed control potatoes. However, there were metabolic differences between two control potato lines — one that was fresh and the other stored. After 1 week of storage, comprehensive metabolite patterns were significantly modified. Although the differences between CRDS and glgA transgenic and control potato lines were small, PCA analysis of FT-IR and 1H NMR spectral data identified two distinct control lines. These results suggest that the comprehensive metabolite changes in control potato lines, which occurred after 1 week of storage, were greater than the differences between CRDS and glgA transgenic and wild-type potato lines. Thus, the combination of FT-IR and 1H NMR spectral data and multivariate analysis was valuable for the detection of comprehensive differences in metabolic profiles between transgenic and non-transformed control plants, even though peak-signal overlap prevented assignment of pure compounds. The combination of FT-IR and 1H NMR spectral data and multivariate analysis is a simple and rapid method for evaluation of the metabolic equivalence of GM crops.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call