Abstract

Irradiated blood is a new type of blood product used to prevent transfusion-associated graft-versus-host disease. However, the effects of irradiation on the metabolism of plasma, red blood cells (RBCs), and peripheral blood mononuclear cells (PBMCs) are largely unknown. We developed a workflow for testing metabolic changes in whole blood to determine the impact of irradiation by chemical isotope labeling liquid chromatography-mass spectrometry (CIL LC–MS). Blood parameters, PBMC proliferation and apoptosis were examined before and after irradiation. Next, the amine/phenol metabolites in the blood components were assayed by 12C- and13C-dansylation labeling LC–MS. We identified 1654, 1730, and 1666 peak pairs in plasma, RBCs, and PBMCs, respectively. We screened out 367, 177, and 219 significant metabolites in plasma, RBCs, and PBMCs, respectively, by principle component analyses, volcano plots, and Venn plots. Metabolic pathway analyses showed that irradiation modulated taurine and hypotaurine metabolism in plasma and purine metabolism in RBCs and PBMCs. Changes in potential biomarkers, including an increase in hypoxanthine level and a decrease in adenine level, may be related to the dysfunction of DNA synthesis in PBMCs. The decreased AMP level in RBCs may interfere with RBC storage lesions. Our research provides a more comprehensive perspective on blood metabolism associated with irradiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call