Abstract

The spatial distributions of atrazine and six types of metabolites in water, suspended particulate sediment (SPS), and surface sediment in an estuary-to-bay system were analyzed. The water distance of metabolites demonstrated that degradation was more active in coastal zone and the Desisopropylatrazine had the shortest half-distance of 1.6 Km from the river mouth. The dechlorination-hydroxylation metabolites were the dominant pollutants in the bay and the Didealkyl-atrazine (DDA), Deisopropylhydroxy-atrazine (DIHA), and Deethylhydroxy-atrazine (DEHA) had higher concentrations in all three mediums. The DDA had the biggest content (6.58 ng/g) in the coastal sediment. The DIHA was the only pollutant had bigger concentration during the transport, and the others continually degraded with smaller value. The spatial distributions of pollutants in sediment had different patterns in water with SPS. The water-particle phase partition coefficient (Kp) analysis indicated that the partition process was more active in the estuary than the bay, and the metabolites had stronger capacity than atrazine. The correlations between Kp with octanol-water partitioning coefficient showed their physic-chemical properties were the important factors for vertical partition between seawater with sediment. The correlations with marine environmental factors demonstrated that the metabolite type was the direct factor for the redistributions during the transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.