Abstract

CHO cell lines capable of high-level recombinant protein product biosynthesis during fed-batch culture are still generally obtained by intensive empirical screening of transfected cells rather than knowledge-guided cellular engineering. In this study, we investigate how CHO cell lines create and maintain cellular biosynthetic capacity during fed-batch culture to achieve the optimal combination of rapid exponential proliferation and extended maintenance of high cell biomass concentration. We perform a comparative meta-analysis of mitochondrial and glycolytic functions of 22 discrete parental CHO cell lineages varying in fed-batch culture performance to test the hypotheses that (i) "biomass-intensive" CHO cells exhibit conserved differences in metabolic programming and (ii) it is possible to isolate parental CHO cell lines with a biomass-intensive phenotype to support fed-batch bioproduction processes. We show that for most parental CHO cell lines, rapid proliferation and high late-stage culture performance are mutually exclusive objectives. However, quantitative dissection of mitochondrial and glycolytic functions revealed that a small proportion of clones utilize a conserved metabolic program that significantly enhances cellular glycolytic and mitochondrial oxidative capacity at the onset of late-stage culture. We reveal the central importance of dynamic metabolic re-programming to activate oxidative mitochondrial function as a necessary mechanism to support CHO cell biosynthetic performance during culture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.