Abstract
The study of lipid metabolism relies on the characterization of the lipidome, which is quite complex due to the structure variations of the lipid species. New analytical tools have been developed recently for characterizing fine structures of lipids, with C=C location identification as one of the major improvements. In this study, we studied the lipid metabolism reprograming by analyzing glycerol phospholipid compositions in breast cancer cell lines with structural specification extended to the C=C location level. Inhibition of the lipid desaturase, stearoyl-CoA desaturase 1, increased the proportion of n-10 isomers that are produced via an alternative fatty acid desaturase 2 pathway. However, there were different variations of the ratio of n-9/n-7 isomers in C18:1-containing glycerol phospholipids after stearoyl-CoA desaturase 1 inhibition, showing increased tendency in MCF-7 cells, MDA-MB-468 cells, and BT-474 cells, but decreased tendency in MDA-MB-231 cells. No consistent change of the ratio of n-9/n-7 isomers was observed in SK-BR-3 cells. This type of heterogeneity in reprogrammed lipid metabolism can be rationalized by considering both lipid desaturation and fatty acid oxidation, highlighting the critical roles of comprehensive lipid analysis in both fundamental and biomedical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.