Abstract

Central carbon metabolism of the yeast Saccharomyces cerevisiae was analyzed using metabolic pathway analysis tools. Elementary flux modes for three substrates (glucose, galactose, and ethanol) were determined using the catabolic reactions occurring in yeast. Resultant elementary modes were used for gene deletion phenotype analysis and for the analysis of robustness of the central metabolism and network functionality. Control-effective fluxes, determined by calculating the efficiency of each mode, were used for the prediction of transcript ratios of metabolic genes in different growth media (glucose-ethanol and galactose-ethanol). A high correlation was obtained between the theoretical and experimental expression levels of 38 genes when ethanol and glucose media were considered. Such analysis was shown to be a bridge between transcriptomics and fluxomics. Control-effective flux distribution was found to be promising in in silico predictions by incorporating functionality and regulation into the metabolic network structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.