Abstract
3-Hydroxy dicarboxylic acids with chain lengths ranging from 6 to 14 carbons are excreted in human urine. The urinary excretion of these acids is increased in conditions of increased mobilization of fatty acids or inhibited fatty acid oxidation. Similar urinary profiles of 3-hydroxy dicarboxylic acids were also observed in fasting rats. The metabolic genesis of these urinary 3-hydroxy dicarboxylic acids was investigated in vitro with rat liver postmitochondrial and mitochondrial fractions. 3-Hydroxy monocarboxylic acids ranging from 3-hydroxyhexanoic acid to 3-hydroxyhexadecanoic acid were synthesized. In the rat liver postmitochondrial fraction fortified with NADPH, these 3-hydroxy fatty acids with carbon chains equal to or longer than 10 were oxidized to (omega - 1)- and omega-hydroxy metabolites as well as to the corresponding 3-hydroxy dicarboxylic acids. 3-Hydroxyhexanoic (3OHMC6) and 3-hydroxyoctanoic (3OHMC8) acids were not metabolized. Upon the addition of mitochondria together with ATP, CoA, carnitine, and MgCl2, the 3-hydroxy dicarboxylic acids were converted to 3-hydroxyoctanedioic, trans-2-hexenedioic, suberic, and adipic acids. In the urine of children with elevated 3-hydroxy dicarboxylic acid levels, 3OHMC6, 3OHMC8, 3-hydroxydecanoic, 3,10-dihydroxydecanoic, 3,9-dihydroxydecanoic, and 3,11-dihydroxydodecanoic acids were identified. On the basis of these data, we propose that the urinary 3-hydroxy dicarboxylic acids are derived from the omega-oxidation of 3-hydroxy fatty acids and the subsequent beta-oxidation of longer chain 3-hydroxy dicarboxylic acids. These urinary 3-hydroxy dicarboxylic acids are not derived from the beta-oxidation of unsubstituted dicarboxylic acids.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.