Abstract

Research into human metabolism is expanding rapidly due to the emergence of metabolism as a key factor in common diseases. Mathematical modeling of human cellular metabolism has traditionally been performed via kinetic approaches whose applicability for large-scale systems is limited by lack of kinetic constants data. An alternative computational approach bypassing this hurdle called constraint-based modeling (CBM) serves to analyze the function of large-scale metabolic networks by solely relying on simple physical-chemical constraints. However, while extensive research has been performed on constraint-based modeling of microbial metabolism, large-scale modeling of human metabolism is still in its infancy. Utilizing constraint-based modeling to model human cellular metabolism is significantly more complicated than modeling microbial metabolism as in multi-cellular organisms the metabolic behavior varies across cell-types and tissues. It is further complicated due to lack of data on cell type- and tissue-specific metabolite uptake from the surrounding microenvironments and tissue-specific metabolic objective functions. To overcome these problems, several studies suggested CBM methods that integrate metabolic networks with gene expression data that is easily measurable under various conditions. This specific objective functions are expected to improve the prediction accuracy of the presented methods. Such objective functions may be derived based on computational learning that would give optimal correspondence between predicted and measured metabolic phenotypes (Burgard, 2003). The CBM methods presented here open the way for future computational investigations of metabolic disorders given the relevant expression data. A first attempt to visualize and interpret changes in gene expression data measured following gastric bypass surgery via a genome-scale metabolic network was done by Duarte et al (Duarte, 2007). Another potential application would be the prediction of diagnostic biomarkers for metabolic diseases that could be identified via biofluid metabolomics (Kell, 2007). Towards this goal, we have recently developed a CBM method for predicting metabolic biomarkers for in-born errors of metabolism by searching for changes in metabolite uptake and secretion rate due to genetic alterations (Shlomi, 2009). Incorporating cell type- and tissue-specific gene expression data within this framework can potentially improve the identification of diagnostic biomarkers. Overall, the methods presented here lay the foundation for studying normal and abnormal human cellular metabolism in tissue-specific manner based on commonly measured gene expression data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call