Abstract

Over the past years, metagenomics has revolutionized our view of microbial diversity. Moreover, extracting near-complete genomes from metagenomes has led to the discovery of known metabolic traits in unsuspected lineages. Genome-resolved metagenomics relies on assembly of the sequencing reads and subsequent binning of assembled contigs, which might be hampered by strain heterogeneity or low abundance of a target organism. Here we present a complementary approach, metagenome marker gene mining, and use it to assess the global diversity of archaeal methane metabolism through the mcrA gene. To this end, we have screened 18,465 metagenomes for the presence of reads matching a database representative of all known mcrA proteins and reconstructed gene sequences from the matching reads. We use our mcrA dataset to assess the environmental distribution of the Methanomassiliicoccales and reconstruct and analyze a draft genome belonging to the ‘Lake Pavin cluster’, an uncultivated environmental clade of the Methanomassiliicoccales. Analysis of the ‘Lake Pavin cluster’ draft genome suggests that this organism has a more restricted capacity for hydrogenotrophic methylotrophic methanogenesis than previously studied Methanomassiliicoccales, with only genes for growth on methanol present. However, the presence of the soluble subunits of methyltetrahydromethanopterin:CoM methyltransferase (mtrAH) provide hypothetical pathways for methanol fermentation, and aceticlastic methanogenesis that await experimental verification. Thus, we show that marker gene mining can enhance the discovery power of metagenomics, by identifying novel lineages and aiding selection of targets for in-depth analyses. Marker gene mining is less sensitive to strain heterogeneity and has a lower abundance threshold than genome-resolved metagenomics, as it only requires short contigs and there is no binning step. Additionally, it is computationally cheaper than genome resolved metagenomics, since only a small subset of reads needs to be assembled. It is therefore a suitable approach to extract knowledge from the many publicly available sequencing projects.

Highlights

  • Genome resolved metagenomics is allowing unprecedented, primer independent, insight in the diversity of the microbial world (Tyson et al, 2004; Hug et al, 2016)

  • To leverage the available metagenomic sequencing data for a diversity analysis of functional marker genes, we established a workflow based on automated sequential downloading and processing of the public data in the Sequencing Read Archive (SRA) and the Metagenomics RAST (MG-RAST) repositories (Fig. 1)

  • We applied this workflow to the mcrA gene, a marker for the production and anaerobic oxidation of methane, because of the environmental relevance of these processes (Knittel & Boetius, 2009)

Read more

Summary

Introduction

Genome resolved metagenomics is allowing unprecedented, primer independent, insight in the diversity of the microbial world (Tyson et al, 2004; Hug et al, 2016). Other major advances in our understanding of the diversity of archaeal methane metabolism have come from cultivation studies, including the culturing and enrichment of members of the 7th Euryarchaeal order of methanogens, the Methanomassiliicoccales (Dridi et al, 2012; Borrel et al, 2012; Iino et al, 2013; Borrel et al, 2013a), and the recent culturing of halophilic methanogens from Siberian soda lakes (Sorokin et al, 2017) The latter group seems to be restricted to highly saline environments, whereas environmental sequencing indicates that the Methanomassiliicoccales are widely distributed, occurring in habitats ranging from animal guts to wetlands and wastewater treatment (Großkopf, Stubner & Liesack, 1998; Tajima et al, 2001; Wright et al, 2004; Iino et al, 2013; Söllinger et al, 2016). Another recent study suggested the existence of Methanomassiliicoccales in marine sediments, based on the presence of butanetriol dibiphytanyl glycerol tetraether (BDGT) lipids in Methanomassiliicoccus luminyensis, and the detection of these lipids in marine sediments (Becker et al, 2016), but the specificity of this biomarker is unclear

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.