Abstract

BackgroundHigh-resolution magic angle proton magnetic resonance spectroscopy (HR 1H MAS MRS) provides a broad metabolic mapping of intact tumor samples and allows for microscopy investigations of the samples after spectra acquisition. Experimental studies have suggested that the method can be used for detection of apoptosis, but this has not been investigated in a clinical setting so far. We have explored this hypothesis in cervical cancers by searching for metabolites associated with apoptosis that were not influenced by other histopathological parameters like tumor load and tumor cell density.MethodsBiopsies (n = 44) taken before and during radiotherapy in 23 patients were subjected to HR MAS MRS. A standard pulse-acquire spectrum provided information about lipids, and a spin-echo spectrum enabled detection of non-lipid metabolites in the lipid region of the spectra. Apoptotic cell density, tumor cell fraction, and tumor cell density were determined by histopathological analysis after spectra acquisition.ResultsThe apoptotic cell density correlated with the standard pulse-acquire spectra (p < 0.001), but not with the spin-echo spectra, showing that the lipid metabolites were most important. The combined information of all lipids contributed to the correlation, with a major contribution from the ratio of fatty acid -CH2 to CH3 (p = 0.02). In contrast, the spin-echo spectra contained the main information on tumor cell fraction and tumor cell density (p < 0.001), for which cholines, creatine, taurine, glucose, and lactate were most important. Significant correlations were found between tumor cell fraction and glucose concentration (p = 0.001) and between tumor cell density and glycerophosphocholine (GPC) concentration (p = 0.024) and ratio of GPC to choline (p < 0.001).ConclusionOur findings indicate that the apoptotic activity of cervical cancers can be assessed from the lipid metabolites in HR MAS MR spectra and that the HR MAS data may reveal novel information on the metabolic changes characteristic of apoptosis. These changes differed from those associated with tumor load and tumor cell density, suggesting an application of the method to explore the role of apoptosis in the course of the disease.

Highlights

  • High-resolution magic angle proton magnetic resonance spectroscopy (HR 1H MAS MRS) provides a broad metabolic mapping of intact tumor samples and allows for microscopy investigations of the samples after spectra acquisition

  • The morphology of the samples did not change during the MR experiments, and there was no increase in apoptotic cell density or decrease in tumor cell density either (Figure 1)

  • Our studies showed that the apoptotic activity of cervical carcinomas was associated with the lipid metabolites in HR MAS MR spectra, whereas tumor cell fraction and tumor cell density were related to cholines, creatine, taurine, glucose, and lactate

Read more

Summary

Introduction

High-resolution magic angle proton magnetic resonance spectroscopy (HR 1H MAS MRS) provides a broad metabolic mapping of intact tumor samples and allows for microscopy investigations of the samples after spectra acquisition. Experimental studies have suggested that the method can be used for detection of apoptosis, but this has not been investigated in a clinical setting so far. We have explored this hypothesis in cervical cancers by searching for metabolites associated with apoptosis that were not influenced by other histopathological parameters like tumor load and tumor cell density. Apoptosis plays an important role in cancer development, progression, and response to therapy [1,2]. Information on the apoptotic activity in tumors and the metabolic changes involved may give valuable insight into the mechanisms underlying cancer progression and treatment response. Considerable effort is put into the development of clinically useful methods for detection and exploration of apoptosis

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call