Abstract

Raman spectroscopy was applied with a high spectral resolution to a structural study of Influenza (type A) virus before and after its inoculation into Madin-Darby canine kidney cells. This study exploits the fact that the major virus and cell constituents, namely DNA/RNA, lipid, and protein molecules, exhibit peculiar fingerprints in the Raman spectrum, which clearly differed between cells and viruses, as well as before and after virus inoculation into cells. These vibrational features, which allowed us to discuss viral assembly, membrane lipid evolution, and nucleoprotein interactions of the virus with the host cells, reflected the ability of the virus to alter host cells' pathways to enhance its replication efficiency. Upon comparing Raman signals from the host cells before and after virus inoculation, we were also able to discuss in detail cell metabolic reactions against the presence of the virus in terms of compositional variations of lipid species, the formation of fatty acids, dephosphorylation of high-energy adenosine triphosphate molecules, and enzymatic hydrolysis of the hemagglutinin glycoprotein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.