Abstract

The isotopically substituted molecule (6-13C, 1, 6, 6-2H3)glucose was evaluated to determine whether metabolic 2H loss would prevent its use in quantitating pentose phosphate pathway (PPP) activity. PPP activity causes the C1 of glucose to be lost as CO2, while C6 can appear in lactate. 2H NMR analysis of the lactate produced from this glucose can distinguish (3-2H)-lactate (from C1 of glucose) from (3-13C, 3, 3-2H2)lactate (from C6 of glucose). 2H NMR spectroscopic analysis of medium containing (6-13C, 1, 6, 6-2H3)glucose after incubation with cultured rat 9L glioma cells suggested a 30.8 +/- 2.1% PPP activity as compared with 6.0 +/- 0.8% from separate, parallel incubations with (1-13C)glucose and (6-13C)glucose. Subsequent experiments with other isotopically labeled glucose molecules suggest that this discrepancy is due to selective loss of 2H from the C1 position of glucose, catalyzed by phosphomannose isomerase. Failure to consider 2H exchange from the C1 and C6 positions of glucose can lead to incorrect conclusions in metabolic studies utilizing this and other deuterated or tritiated glucose molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.