Abstract

The rise in antibiotic-resistant bacteria is causing worldwide concerns. The urgent need for new antibacterial drugs calls for new thinking and strategies to explore novel, narrow-spectrum, and pathogen-specific antibacterial targets. Legionaminic acid (Leg) and pseudaminic acid (Pse) are nonulosonic acid carbohydrates with structural similarity to eukaryotic sialic acid, and are distributed in numerous pathogenic Gram-negative bacteria as components of cell surface-associated glycans. They are involved in the host interaction, pathogenicity, antiphage defense mechanism, and immune escape mechanism. To further explore their biological significance, we developed a synthesis of 2-acetamido-4-azidoacetamido-2,4,6-trideoxy-l-altrose (Alt-4NAz) and 2-azidoacetamido-4-acetamido-2,4,6-trideoxy-l-altrose (Alt-2NAz), among which Alt-4NAz served as an effective chemical reporter to realize bacterial Pse metabolic labeling. The effectiveness of this chemical reporter has been demonstrated in Pseudomonas aeruginosa, Vibrio vulnificus, and Acinetobacter baumannii strains. Expectedly, this strategy can provide a useful assay to detect phenotypic presence of Pse biosynthesis and screen for agents targeting this pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.