Abstract
This study was originally undertaken to establish the in vitro metabolic conditions and then evaluate the effect of pharmaceutical excipients (PEs) on drug metabolism in uridine diphosphoglucuronic acid-supplemented human liver microsomes. Poorly bioavailable raloxifene was chosen as a model drug. Intact drug and its two glucuronide metabolites were successfully isolated using gradient HPLC analysis and LC/MS analysis. Formation of raloxifene metabolites was affected by buffer compositions, incubation time and initial raloxifene concentrations. Under optimized metabolic conditions, 41.0% of raloxifene was converted to its metabolites after 2h incubation. This metabolic inhibition of raloxifene by the PEs occurred in a dose-dependent manner and accordingly formed two glucuronide metabolites. In the metabolic kinetics using Lineweaver-Burk analyses, Cremophor® EL competitively inhibited formation of metabolites while sodium lauryl sulfate (SLS), polyvinylpyrrolidone K30 (PVP) and Tween® 80 significantly inhibited in a mixed competition. Although some PEs showed inhibition on glucuronidation of raloxifene in vitro, their effects on in vivo bioavailability of raloxifene need to be confirmed directly due to the dilution factors and other complicated situations influencing the bioavailability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.