Abstract
This paper deals with the microbial production of polyhydroxyalkanoates (PHAs), biodegradable thermoplastics which perform excellently as a material, from inexpensive renewable carbon sources. To date, with the help of genetic engineering techniques, it has become possible to design several types of PHAs with different compositions and to enhance the productivities of PHAs. In addition, molecular breeding of PHA biosynthesis enzymes has been demonstrated to improve polymer production. Mutant PHA synthases generated by an in vitro evolution technique have allowed the enhanced production and quality alteration of PHAs. Furthermore, use of inexpensive renewable carbon sources, such as plant oils, waste materials, and carbon dioxide, would be a key for a reduction in PHA production cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.