Abstract

Among organic contaminants, pesticides are one of the most important groups of chemicals due to their persistent character and toxicity. However, the biological systems are exposed to a complex environment in which the contaminants can interact in a synergistic/antagonistic fashion, and for this reason, the study of "chemical cocktails" is of great interest to fully understand the final biological effect. In this way, selenium is known for its antagonistic action against several toxicants. In this paper, metabolic impairments caused by the joint exposure of p,p'-dichloro diphenyl trichloroethane (DDE) and selenium (Se) have been issued for the first time. A metabolomic workflow was applied to mice fed DDE and DDE with Se diet, on the basis of the complementary use of two organic mass spectrometric techniques, combining direct infusion mass spectrometry (DI-ESI-QqQ-TOF MS) and gas chromatography-mass spectrometry (GC-MS). The results show a good classification between the studied groups caused by about 70 altered metabolites in the liver, kidney, or brain, including the pathways of energy metabolism, degradation of phospholipidic membrane, β-oxidation, and oxidative stress, which confirm the potential of combined metabolomic platforms in environmental studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.