Abstract

Cancer cells are known to display a variety of metabolic reprogramming strategies to fulfill their own growth and proliferative agenda. With the advent of high resolution imaging strategies, metabolomics techniques etc., there is an increasing appreciation of critical role that tumor cell metabolism plays in the overall breast cancer (BC) growth. A recent study from our laboratory demonstrated that the development of invasive cancers could be causally connected to deficits in mitochondrial function. Using this study as a rationale, we hypothesize that the widely accepted multistep tumor growth model might have a strong metabolic component as well. In this study, we explore the possibility of targeting mitochondrial Complex I enzyme system for not only metabolic detection of cancer-associated redox changes but also for modulating breast cancer cell growth characteristics. As a proof-of-principle, we demonstrate two approaches (pharmacological and genetic) for modulating mitochondrial Complex I function so as to achieve breast cancer control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call