Abstract

The tea tree is a perennial woody plant, and pruning is one of the most crucial cultivation measurements for tea plantation management. To date, the relationship between long-term pruning and metabolic flux enhancement in tea trees has not been studied. In this research, 11-year-old pruned tea trees from four different cultivars were randomly selected for transcriptome analysis and characteristic secondary metabolite analysis together with controls. The findings revealed that epigallocatechin gallate (EGCG) accumulation in pruned tea trees was significantly higher than that in unpruned tea trees. SCPL1A expression (encoding a class of serine carboxypeptidase), which has been reported to have a catalytic ability during EGCG biosynthesis, together with LAR, encoding leucoanthocyanidin reductase, was upregulated in the pruned tea trees. Moreover, metabolic flux enhancement and transcriptome analysis revealed low EGCG accumulation in the leaves of unpruned tea trees. Because of the bitter and astringent taste of EGCG, these results provide a certain understanding to the lower bitterness and astringency in teas from "ancient tea trees", growing in the wild with no trimming, than teas produced from pruned plantation trees.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.