Abstract

The hepatic response to severe injury is characterized by a marked upregulation of glucose, fatty acid, and amino acid turnover, which, if persistent, predisposes the patient to progressive organ dysfunction. To study the effect of injury on liver intermediary metabolism, metabolic flux analysis was applied to isolated perfused livers of burned and sham-burned rats. Intracellular fluxes were calculated using metabolite measurements and a stoichiometric balance model. Significant flux increases were found for multiple pathways, including mitochondrial electron transport, the TCA and urea cycles, gluconeogenesis, and pentose phosphate pathway (PPP). The burn-induced increase in gluconeogenesis did not significantly increase glucose output. Instead, glucose-6-phosphate was diverted into the PPP. These changes were paralleled by increases in glucose-6-phosphate dehydrogenase (G6PDH) and glutathione reductase (GR) activities. Given that G6PDH and GR are the most significant NADPH producers and consumers in the liver, respectively, and that GR is responsible for recycling the free radical scavenger glutathione, these data are consistent with the notion that hepatic metabolic changes are in part due to the induction of liver antioxidant defenses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.