Abstract

We evaluated the effect of a reduction in the systemic ratio of n-6:n-3 polyunsaturated fatty acids (PUFAs) on changes in inflammation, glucose metabolism, and the idiopathic development of knee osteoarthritis (OA) in mice. We hypothesized that a lower ratio of n-6:n-3 PUFAs would protect against OA markers in cartilage and synovium, but not bone. Male and female fat-1 transgenic mice (Fat-1), which convert dietary n-6 to n-3 PUFAs endogenously, and their wild-type (WT) littermates were fed an n-6 PUFA enriched diet for 9-14 months. The effect of gender and genotype on serum PUFAs, interleukin (IL)-6, tumor necrosis factor (TNF)-α, and glucose tolerance was tested by 2-factor analysis of variance (ANOVA). Cortical and trabecular subchondral bone changes were documented by micro-focal computed tomography (CT), and knee OA was assessed by semi-quantitative histomorphometry grading. The n-6:n-3 ratio was reduced 12-fold and 7-fold in male and female Fat-1 mice, respectively, compared to WT littermates. IL-6 and TNF-α levels were reduced modestly in Fat-1 mice. However, these systemic changes did not reduce osteophyte development, synovial hyperplasia, or cartilage degeneration. Also the fat-1 transgene did not alter subchondral cortical or trabecular bone morphology or bone mineral density. Reducing the systemic n-6:n-3 ratio does not slow idiopathic changes in cartilage, synovium, or bone associated with early-stage knee OA in mice. The anti-inflammatory and anti-catabolic effects of n-3 PUFAs previously reported for cartilage may be more evident at later stages of disease or in post-traumatic and other inflammatory models of OA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call