Abstract

BackgroundFumaric acid is widely used in food and pharmaceutical industries and is recognized as a versatile industrial chemical feedstock. Increasing concerns about energy and environmental problems have resulted in a focus on fumaric acid production by microbial fermentation via bioconversion of renewable feedstocks. Filamentous fungi are the predominant microorganisms used to produce organic acids, including fumaric acid, and most studies to date have focused on Rhizopus species. Thermophilic filamentous fungi have many advantages for the production of compounds by industrial fermentation. However, no previous studies have focused on fumaric acid production by thermophilic fungi.ResultsWe explored the feasibility of producing fumarate by metabolically engineering Myceliophthora thermophila using the CRISPR/Cas9 system. Screening of fumarases suggested that the fumarase from Candida krusei was the most suitable for efficient production of fumaric acid in M. thermophila. Introducing the C. krusei fumarase into M. thermophila increased the titer of fumaric acid by threefold. To further increase fumarate production, the intracellular fumarate digestion pathway was disrupted. After deletion of the two fumarate reductase and the mitochondrial fumarase genes of M. thermophila, the resulting strain exhibited a 2.33-fold increase in fumarate titer. Increasing the pool size of malate, the precursor of fumaric acid, significantly increased the final fumaric acid titer. Finally, disruption of the malate–aspartate shuttle increased the intracellular malate content by 2.16-fold and extracellular fumaric acid titer by 42%, compared with that of the parental strain. The strategic metabolic engineering of multiple genes resulted in a final strain that could produce up to 17 g/L fumaric acid from glucose in a fed-batch fermentation process.ConclusionsThis is the first metabolic engineering study on the production of fumaric acid by the thermophilic filamentous fungus M. thermophila. This cellulolytic fungal platform provides a promising method for the sustainable and efficient-cost production of fumaric acid from lignocellulose-derived carbon sources in the future.

Highlights

  • Fumaric acid is widely used in food and pharmaceutical industries and is recognized as a versatile industrial chemical feedstock

  • Spmae encoding the C4-dicarboxylate transporter from Schizosaccharomyces pombe, which had been used for production of malate, fumaric acid, and succinate [19, 20, 30, 31]

  • The fumarate titer in the Rofum-overexpressing strain was increased by 35%, consistent with the results previously reported for Scheffersomyces stipitis and T. glabrata [20, 24], but different from those reported for S. cerevisiae and A. niger [3, 23]

Read more

Summary

Introduction

Fumaric acid is widely used in food and pharmaceutical industries and is recognized as a versatile industrial chemical feedstock. Previous studies on the production of fumaric acid by Rhizopus species have mainly focused on the optimization of medium composition and fermentation and processing conditions [8,9,10,11]. By optimizing the fermentation temperature, agitation rate, and medium composition, fumaric acid production by Rhizopus delemar was increased by 31.82% in a stirred bioreactor tank, to a final titer of 39.56 g/L This yield was still much lower than the theoretical yield of the reductive TCA pathway [12]. Problems including the pathogenic properties and morphological characteristics of R. oryzae have restricted its wider use on an industrial scale [2, 17] Given these disadvantages, there have been increasing efforts to produce fumaric acid using other microbes, especially using metabolic engineering strategies

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call